CSE211

Computer Organization and Design

MICROOPERATIONS

Computer system microoperations are of four types:
$>$ Arithmetic microoperations
$>$ Register transfer microoperations
$>$ Logic microoperations
$>$ Shift microoperations

Arithmetic MICROOPERATIONS

- The basic arithmetic microoperations are
- Addition
- Subtraction
- Increment
- Decrement
- The additional arithmetic microoperations are
- Add with carry
- Subtract with borrow
- Transfer/Load
- etc. ...

Summary of Typical Arithmetic Micro-Operations

$\mathrm{R} 3 \leftarrow \mathrm{R} 1+\mathrm{R} 2$	Contents of R1 plus R2 transferred to R3
$\mathrm{R} 3 \leftarrow \mathrm{R} 1-\mathrm{R} 2$	Contents of R1 minus R2 transferred to R3
$\mathbf{R 2} \leftarrow \mathbf{R} \mathbf{2}^{\prime}$	Complement the contents of R2
$\mathrm{R} 2 \leftarrow \mathrm{R}^{\prime}+1$	2's complement the contents of R2 (negate)
$\mathbf{R 3} \leftarrow \mathbf{R} 1+\mathrm{R} \mathbf{2}^{\prime}+1$	subtraction
$\mathbf{R 1} \leftarrow \mathrm{R} 1+1$	Increment
$\mathrm{R} 1 \leftarrow \mathrm{R} 1-1$	Decrement

Full Adder is the adder which adds three inputs and produces two outputs. The first two inputs are A and B and the third input is an input carry as $\mathrm{C}-\mathrm{IN}$. The output carry is
 designated as C-OUT and the normal output is designated as S which is SUM.

Inputs			Outputs	
A	B	C-IN	Sum	C-Out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Binary Adder

- 4-bit Binary Adder : Fig. 4-6
- Full adder = 2-bits sum + previous carry
- Binary adder = the arithmetic sum of two binary numbers of any length
- co(input carry), c_{4} (output carry)

Figure 4-6. 4-bit binary adder

- The augend bits (A) and the addend bits (B) are designated by subscript numbers from right to left, with subscript ' 0 ' denoting the low-order bit.
- The carry inputs starts from C0 to C3 connected in a chain through the full-adders. C 4 is the resultant output carry generated by the last full-adder circuit.
- The output carry from each full-adder is connected to the input carry of the next-high-order full-adder.
- The sum outputs (S0 to S3) generates the required arithmetic sum of augend and addend bits.
- The \boldsymbol{n} data bits for the A and B inputs come from different source registers. For instance, data bits for \mathbf{A} input comes from source register R1 and data bits for \mathbf{B} input comes from source register R2.
- The arithmetic sum of the data inputs of A and B can be transferred to a third register or to one of the source registers (R1 or R2).

BINARY ADDER-SUBTRACTOR

4 bit adder-subtractor:

$>$ Mode input M controls the operation
$>\mathrm{M}=0$---- adder
$>\mathrm{M}=1$---- subtractor

- When the mode input (M) is at a low logic, i.e. ' 0 ', the circuit act as an adder and when the mode input is at a high logic, i.e. ' 1 ', the circuit act as a subtractor.
- The exclusive-OR gate connected in series receives input M and one of the inputs B .
- When M is at a low logic, we have $\mathrm{B} \oplus 0=\mathrm{B}$.

The full-adders receive the value of B , the input carry is 0 , and the circuit performs A plus B.

- When M is at a high logic, we have $\mathrm{B} \oplus 1=\mathrm{B}^{\prime}$ and $\mathrm{C} 0=1$.

The B inputs are complemented, and a 1 is added through the input carry. The circuit performs the operation A plus the 2's complement of B .

BINARY INCREMENTER

The increment micro-operation adds one binary value to the value of binary variables stored in a register. For instance, a 4-bit register has a binary value 0110, when incremented by one the value becomes 0111 . The increment micro-operation is best implemented by a 4-bit combinational circuit incrementer. A 4-bit combinational circuit incrementer can be represented by the following block diagram.

4-bit binary incrementer:

- A logic-1 is applied to one of the inputs of least significant half-adder, and the other input is connected to the least significant bit of the number to be incremented.
- The output carry from one half-adder is connected to one of the inputs of the next-higher-order half-adder.
- The binary incrementer circuit receives the four bits from A0 through A3, adds one to it, and generates the incremented output in S0 through S3.
- The output carry C4 will be 1 only after incrementing binary 1111.

Binary Decrement Using Full Adder (4-bit)

BASIC THEORY

The binary decremented decreases the value stored in a

 bit of the existing value stored in a register. This is basically the concept of two's complement used for subtraction of '1' from given data. It is made by cascading ' n ' full adders for ' n ' number of bits i.e. the storage capacity of the register to be decremented. Hence, a 4-bit binary decrementer requires 4 cascaded half adder circuits. As stated above we add '1111' to 4 bit data in order to subtract '1' from it.

Arithmetic Circuits

CSE 211

